
Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Python Beginner Tutorials

Beginner

Getting Started
Numbers
String basics
String methods
Lists
Tuples
Dictionaries
Datatype casting
If statements
Functions
Loops
Random numbers
Objects and classes
Encapsulation
Method overloading
Inheritance
Polymorphism
Inner classes
Factory method
Binary numbers
Recursive functions
Logging
Subprocess
Threading

Top

Page 1

https://pythonspot.com
https://pythonspot.com/getting-started/
https://pythonspot.com/python-numbers/
https://pythonspot.com/python-strings/
https://pythonspot.com/string-methods/
https://pythonspot.com/python-lists/
https://pythonspot.com/python-tuples/
https://pythonspot.com/python-dictionaries/
https://pythonspot.com/datatype-casting/
https://pythonspot.com/conditional-statements/
https://pythonspot.com/functions/
https://pythonspot.com/loops/
https://pythonspot.com/random-numbers/
https://pythonspot.com/objects-and-classes
https://pythonspot.com/encapsulation
https://pythonspot.com/method-overloading/
https://pythonspot.com/inheritance/
https://pythonspot.com/poylmorphism/
https://pythonspot.com/inner-classes
https://pythonspot.com/factory-method/
https://pythonspot.com/binary-numbers-and-logical-operators/
https://pythonspot.com/recursion/
https://pythonspot.com/logging/
https://pythonspot.com/python-subprocess/
https://pythonspot.com/threading

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Getting started

Python is a general-purpose computer programming language, ranked among the top
eight most popular programming languages in the world.

It can be used to create many things including web applications, desktop applications as
scripting interpreter and many more.

Please do note the online interpreters may not work for everything but will work for the
beginner tutorials.

Run Python code online

Skulpt Python interpreter
Repl.it Python interpreter
Ideone.com Python interpreter
Codepad Python interpreter

Run Python code on your machine

Official Python Installation Guide
PyCharm IDE (recommended)

Try this code:
Try this code to test if Python is installed correctly.

#!/usr/bin/env python

print("Hello World!")
print("This is a Python program.")

(In Python 2.x you do not have to use the brackets around the print function, for Python 3.x
is it required.)

Expected output:

Hello World!
This is a Python program

Next tutorial

Page 2

https://pythonspot.com
http://pythonspot.com/run.php
http://repl.it/languages/Python3
https://ideone.com/
http://codepad.org/
https://wiki.python.org/moin/BeginnersGuide/Download
https://www.jetbrains.com/pycharm/
https://pythonspot.com/python-numbers/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Top

Page 3

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Python numbers

Python supports these data types for numbers:

name purpose
int whole number
long long integers
float floating point real values
complex complex numbers

Example:

#!/usr/bin/python

x = 3 # an integer
f = 3.1415926 # a floating real point
name = "Python" # a string
big = 358315791L # long, a very large number
z = complex(2,3) # (2+3i) a complex number. consists of real an
d imaginary part.

print(x)
print(f)
print(name)
print(big)
print(z)

Output:

3
3.1415926
Python
358315791
(2+3j)

To find the maximum values depend on your platform.

The minimum and maximums on a 32 bit machine:

Page 4

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

datatype minimum maximum
signed int -2147483647 2147483647
long – limited only by memory
float 2.2250738585072014e-308 1.7976931348623157e+308

The number range on a 64 bit machine:

datatype minimum maximum
signed int -9223372036854775807 9223372036854775807
long – limited only by memory

float
 2.2250738585072014e-
308

datatype minimum maximum

Operations
You can do arithemetic operations such as addition (+), multiplication (*), division (/) and
substractions (-).

#!/usr/bin/env python

x = 3
y = 8

sum = x + y

print(sum)

Expected output: 11.

User input
You can also ask the user for input using the raw_input function:

#!/usr/bin/env python

Page 5

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

x = int(raw_input("Enter x:"))
y = int(raw_input("Enter y:"))

sum = x + y
print(sum)

In this case we want whole numbers (integers), which is why we write int() around the
functions. If you want floating point numbers you would write float(raw_input(“Enter x:”)).

In the latest Python version you can use the input() function instead:

#!/usr/bin/env python

x = int(input("Enter x:"))
y = int(input("Enter y:"))

sum = x + y
print(sum)

Next tutorial (Strings) – Previous tutorial

Top

Page 6

https://pythonspot.com
https://pythonspot.com/python-strings/
https://pythonspot.com/getting-started/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Python strings

If you use Python 3.x. put brackets around the print functions.

In Python we can do various operations on strings:

#!/usr/bin/python

s = "Hello Python"
print s # prints whole string
print s[0] # prints "H"
print s[0:2] # prints "He"
print s[2:4] # prints "ll"
print s[6:] # prints "Python"
print s + ' ' + s # print concatenated string.
print s.replace('Hello','Thanks') # print a string with a replaced
 word

Output:

Hello Python
H
He
ll
Python
Hello Python Hello Python
Thanks Python

Python String compare
To compare two strings we can use the == operator.

#!/usr/bin/python

sentence = "The cat is brown"
q = "cat"

if q == sentence:
 print 'equal'
else:
 print 'not equal'

Page 7

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Python String contains

In Python you can test if a string contains a substring using this code:

#!/usr/bin/python

sentence = "The cat is brown"
q = "cat"

if q in sentence:
 print q + " found in " + sentence

Next tutorial (String methods)– Previous (numbers)

Top

Page 8

https://pythonspot.com
https://pythonspot.com/string-methods/
https://pythonspot.com/python-numbers/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

String methods

You learned how to define strings, compare strings and test if the string contains
something in the previous tutorial. In this article you will learn that there are more fun
things you can do with strings.

Length of a string
We can get the length a string using the len() function.

#!/usr/bin/env python

s = "Hello world" # define the string
print len(s) # prints the length of the string

Output:

11

Converting to uppercase or lowercase
The function upper() can be called to convert a whole string to uppercase.

#!/usr/bin/env python

s = "Python" # define the string
s = s.upper() # convert string to uppercase
print s # prints the string

Output:

PYTHON

Likewise we can convert a string to lower characters using the lower() function.

Adding strings together (concatinating)
We can add strings together use the plus operator:

Page 9

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

#!/usr/bin/env python

str1 = "Python"
str2 = " is my favorite programming language."

print str1 + str2 # print a concatenated string.

Output:

Python is my favorite programming language.

Newlines in strings
In Python there are special characers that you can use in a string. You can use them to
create newlines, tabs and so on. Let’s do example,we will use the “\n” or newline
character:

#!/usr/bin/env python

str1 = "In Python,\nyou can use special characters in strings.\nTh
ese special characters can be..."
print str1

Output:

In Python,
you can use special characters in strings.
These special characters can be...

Quotes in strings
Sometimes you may want to show double quotes in the string, but because they are
already used to start or end a string we have to escape them. An example:

#!/usr/bin/env python

Page 10

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

str1 = "The word \"computer\" will be in quotes."
print str1

Output:

The word "computer" will be in quotes.

Special characters overview
An overview of special characters that you can use in strings:

Action character
Newline \n
Quotes \”
Single quote \’
Tab \t
Backslash \\

Next tutorial: Lists – Previous (strings)

Top

Page 11

https://pythonspot.com
https://pythonspot.com/python-lists/
https://pythonspot.com/python-strings/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Python lists

Lists
A list can be used as:

#!/usr/bin/python

l = ["Drake", "Derp", "Derek", "Dominique"]

print l # prints all elements
print l[0] # print first element
print l[1] # prints second element

Output:

['Drake', 'Derp', 'Derek', 'Dominique']
Drake
Derp

Adding and removing items
We can use the functions append() and remove() to manipulate the list.

#!/usr/bin/python

l = ["Drake", "Derp", "Derek", "Dominique"]

print l # prints all elements
l.append("Victoria") # add element.
print l # print all elements
l.remove("Derp") # remove element.
l.remove("Drake") # remove element.
print l # print all elements.

Output:

['Drake', 'Derp', 'Derek', 'Dominique']

Page 12

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

['Drake', 'Derp', 'Derek', 'Dominique', 'Victoria']
['Derek', 'Dominique', 'Victoria']

Sorting lists
We can sort the list using the sort() function.

#!/usr/bin/python

l = ["Drake", "Derp", "Derek", "Dominique"]

print l # prints all elements
l.sort() # sorts the list in alphabetical order
print l # prints all elements

Output:

['Drake', 'Derp', 'Derek', 'Dominique']
['Derek', 'Derp', 'Dominique', 'Drake']

If you want to have the list in descending order, simply use the reverse() function.

#!/usr/bin/python

l = ["Drake", "Derp", "Derek", "Dominique"]

print l # prints all elements
l.sort() # sorts the list in alphabetical order
l.reverse() # reverse order.
print l # prints all elements

Output:

['Drake', 'Derp', 'Derek', 'Dominique']

Page 13

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

['Drake', 'Dominique', 'Derp', 'Derek']

Next tutorial (Tuples) – Previous (String methods)

Top

Page 14

https://pythonspot.com
https://pythonspot.com/python-tuples/
https://pythonspot.com/string-methods/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Python tuples

A tuple is a sequence of data. It is defined as a sequence of elements seperated by a
comma.

#!/usr/bin/python

point = (3,4)
point2 = (2,6,12)

print point
print point[0]
print point[1]

print point2
print point2[0]
print point2[1]

Output:

(3, 4)
3
4
(2, 6, 12)
2
6

Next tutorial (Dictionaries) – Previous (Lists)

Top

Page 15

https://pythonspot.com
https://pythonspot.com/python-dictionaries/
https://pythonspot.com/python-lists/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Python dictionaries

A dictionary can be thought of as an unordered set of key: value pairs. A pair of braces
creates an empty dictionary: {}. Each element can maps to a certain value. An integer or
string can be used for the index. Dictonaries do not have an order. Let us make a simple
dictionary:

#!/usr/bin/python

words = {}
words["Hello"] = "Bonjour"
words["Yes"] = "Oui"
words["No"] = "Non"
words["Bye"] = "Au Revoir"

print words["Hello"]
print words["No"]

Output:

Bonjour
Non

We are by no means limited to single word defintions in the value part. A demonstration:

#!/usr/bin/python

dict = {}
dict['Ford'] = "Car"
dict['Python'] = "The Python Programming Language"
dict[2] = "This sentence is stored here."

print dict['Ford']
print dict['Python']
print dict[2]

Page 16

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Output:

Car
The Python Programming Language
This sentence is stored here.

Manipulating the dictionary
We can manipulate the data stored in a dictionairy after declaration. This is shown in the
example below:

#!/usr/bin/python

words = {}
words["Hello"] = "Bonjour"
words["Yes"] = "Oui"
words["No"] = "Non"
words["Bye"] = "Au Revoir"

print words # print key-pairs.
del words["Yes"] # delete a key-pair.
print words # print key-pairs.
words["Yes"] = "Oui!" # add new key-pair.
print words # print key-pairs.

Output:

{'Yes': 'Oui', 'Bye': 'Au Revoir', 'Hello': 'Bonjour', 'No': 'Non'
}
{'Bye': 'Au Revoir', 'Hello': 'Bonjour', 'No': 'Non'}
{'Yes': 'Oui!', 'Bye': 'Au Revoir', 'Hello': 'Bonjour', 'No': 'Non
'}

Next tutorial (casting datatypes) – Previous (tuples)

Top

Page 17

https://pythonspot.com
https://pythonspot.com/datatype-casting/
https://pythonspot.com/python-tuples/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Datatype casting

To convert between datatypes you can use:

Function Description
int(x) Converts x to an integer
long(x) Converts x to a long integer
float(x) Converts x to a floating point number
str(x) Converts x to an string. x can be of the type

float. integer or long.
hex(x) Converts x integer to a hexadecimal string
chr(x) Converts x integer to a character
ord(x) Converts character x to an integer

An example of casting datatypes in Python:
If you want to print numbers you will often need casting. In this example below we want to
print two numbers, one whole number (integer) and one floating point number.

x = 3
y = 2.15315315313532

print "We have defined two numbers,"
print "x = " + str(x)
print "y = " + str(y)

Output:

We have defined two numbers,
x = 3
y = 2.15315315314

What if we have text that we want to store as number? We will have to cast again.

a = "135.31421"
b = "133.1112223"

c = float(a) + float(b)

Page 18

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

print c

Output:

268.4254323

Next tutorial: Conditional statements– Previous (dictionary)

Top

Page 19

https://pythonspot.com
https://pythonspot.com/conditional-statements/
https://pythonspot.com/python-dictionaries/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Conditional statements

In Python you can define conditional statements, known as if-statements. Consider this
application:

#!/usr/bin/python

x = 3
if x < 10:
 print 'x smaller than 10'
else:
 print 'x is bigger than 10 or equal'

Output:

x smaller than 10

If you set x to be larger than 10, it will execute the second code block.

A little game:
A variable may not always be defined by the user, consider this little game:

age = 24

print "Guess my age, you have 1 chances!"
guess = int(raw_input("Guess: "))

if guess != age:
 print "Wrong!"
else:
 print "Correct"

Conditional operators
A word on conditional operators

operator, description

Page 20

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

!=, not equal

==, equals

>, greater than

Page 21

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Functions

Definition
A function is a set of reusable code that can be called from your program. You have used
functions before including print()
They help you to structure the code and avoid repeating your code all over the place. The
abstract structure is:

def function(parameters):
 instructions
 return value

We can call the function using function(parameters).

Example 1
Let us demonstrate that by an example:

#!/usr/bin/python

def f(x):
 return x*x

print f(3)

Output:

9

The function has one parameter, x. The return value is the value the function returns. Not
all functions have to return something. You are by no means limited to simple arithmetic
operations.

Example 2
We can pass multiple variables:

#!/usr/bin/python

def f(x,y):

Page 22

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

 print 'You called f(x,y) with the value x = ' + str(x) + ' and
 y = ' + str(y)
 print 'x * y = ' + str(x*y)

f(3,2)

Output:

You called f(x,y) with the value x = 3 and y = 2
x * y = 6

Scope
Variables can only reach the area in which they are defined. This will not work:

#!/usr/bin/python

def f(x,y):
 print 'You called f(x,y) with the value x = ' + str(x) + ' and
 y = ' + str(y)
 print 'x * y = ' + str(x*y)
 z = 4 # cannot reach z, so THIS WON'T WORK

z = 3
f(3,2)

but this will:

#!/usr/bin/python

def f(x,y):
 z = 3
 print 'You called f(x,y) with the value x = ' + str(x) + ' and
 y = ' + str(y)
 print 'x * y = ' + str(x*y)
 print z # can reach because variable z is defined in the fun

Page 23

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

ction

f(3,2)

Let’s examine this further:

#!/usr/bin/python

def f(x,y,z):
 return x+y+z # this will return the sum because all variable
s are passed as parameters

sum = f(3,2,1)
print sum

We can also get the contents of a variable from another function:

#!/usr/bin/python

def highFive():
 return 5

def f(x,y):
 z = highFive() # we get the variable contents from highFive
()
 return x+y+z # returns x+y+z. z is reachable becaue it is
 defined above

result = f(3,2)
print result

A variable cannot be outside of the scope. The example below does not work.

#!/usr/bin/python

def doA():

Page 24

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

 a = 5

def doB():
 print a # does not know variable a, WILL NOT WORK!

doB()

but this example will:

#!/usr/bin/python

def doA():
 a = 5

def doB(a):
 print a # we pass variable as parameter, this will work

doB(3)

In the last example we have two different variables named a, because the scope of the
variable a is only within the function. That is to say, the variable is not known outside the
scope. The function doB() will print number 3 (the value passed to it). The assignment a=5
is contained within function doA() and is never used and never visible to the function doB()
or the rest of the code, except within the function doA() itself. To clarify, lets try to print a
variable that is not known outside of the function:

#!/usr/bin/python

def doA():
 a = 5

print a # does not work! a not defined.

If a variable can be reached anywhere in the code is called a global variable. If a variable
is known only inside the scope, we call it a local variable.

Page 25

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Next tutorial: Loops – Previous (if statement)

Top

Page 26

https://pythonspot.com
https://pythonspot.com/loops/
https://pythonspot.com/conditional-statements/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Loops

In Python and many other programming languages you can repeat a part of code using a
loop. A loop repeats a set of instructions N times. Python has 3 loops:

Type Description
For Executes the defined statements until the

condition is met.
While Executes the defined statements while a

condition is true.
nested loops Loops inside loops.

Python For loop example
We can iterate a list using a for loop

#!/usr/bin/python

items = ["Abby","Brenda","Cindy","Diddy"]

for item in items:
 print item

Output:

Abby
Brenda
Cindy
Diddy

The for loop can be used to repeat N times too:

#!/usr/bin/python

for i in range(1,10):
 print i

Page 27

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Output:

1
2
3
4
5
6
7
8
9

Python While loop example
Until a condition is met we can repeat some instructions. For example,

while button_not_pressed:
 drive()

Nested loops in Python:
We can combine for loops using nesting. If we want to iterate over an (x,y) field we could
use:

#!/usr/bin/python

for x in range(1,10):
 for y in range(1,10):
 print "(" + str(x) + "," + str(y) + ")"

Output:

(1,1)
(1,2)
(1,3)
(1,4)
...
(9,9)

Page 28

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Nesting is very useful, but it increases complexity the deeper you nest.

Next tutorial: Random numbers – Previous (functions)

Top

Page 29

https://pythonspot.com
https://pythonspot.com/random-numbers/
https://pythonspot.com/functions/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Random numbers

Using the random module, we can generate pseudo-random numbers. The function
random() generates a random number between zero and one [0, 0.1 .. 1]. Numbers
generated with this module are not truly random but they are enough random for most
purposes.

Random number between 0 and 1.
We can generate a (pseudo) random floating point number with this small code:

from random import *

print random() # Generate a pseudo-
random number between 0 and 1.

Generate a random number between 1 and 100
To generate a whole number (integer) between one and one hundred use:

from random import *

print randint(1, 100) # Pick a random number between 1 and 100.

This will print a random integer. If you want to store it in a variable you can use:

from random import *

x = randint(1, 100) # Pick a random number between 1 and 100.
print x

Random number between 1 and 10
To generate a random floating point number between 1 and 10 you can use the uniform()
function

from random import *

print uniform(1, 10)

Page 30

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Picking a random item from a list

Fun with lists
We can shuffle a list with this code:

from random import *

items = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
shuffle(items)
print items

To pick a random number from a list:

from random import *

items = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

x = sample(items, 1) # Pick a random item from the list
print x[0]

y = sample(items, 4) # Pick 4 random items from the list
print y

We can do the same thing with a list of strings:

from random import *

items = ['Alissa','Alice','Marco','Melissa','Sandra','Steve']

x = sample(items, 1) # Pick a random item from the list
print x[0]

y = sample(items, 4) # Pick 4 random items from the list
print y

Page 31

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Next tutorial: Objects and classes – Previous (loops)

Top

Page 32

https://pythonspot.com
https://pythonspot.com/objects-and-classes
https://pythonspot.com/loops/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Objects and classes

In the very early days of computing, programmers wrote only instructions. That quickly
became very complicated as there were hundreds of instructions. Functions helped to
structure that code and it improved readability. Some time later a new paradigm was
created: virtual objects or object orientated programming. In Python you can use this
paradigm, so let us dive in depth.

Classes in Python
We can create virtual objects in Python. A virtual object can contain variables and
methods. A program may have many different types and are created from a class.
Consider this example:

class User:
 name = ""

 def __init__(self, name):
 self.name = name

 def sayHello(self):
 print "Hello, my name is " + self.name

create virtual objects
james = User("James")
david = User("David")
eric = User("Eric")

call methods owned by virtual objects
james.sayHello()
david.sayHello()

Run this program. In this code we have 3 virtual objects: james, david and eric. Each
object is instance of the User class. In this class we defined the sayHello() method, which
is why we can call it for each of the objects. The __init__() method is called the
constructor and is always called when creating an object. The variables owned by the
class is in this case “name”.

Exercises:

1. Add eric.sayHello() and run
2. Change the order and amount of sayHello() calls
3. Add a method sayBye() that displays “Goodbye”
4. Change the text inside User(“James”) and see what happens.

Page 33

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

5. Create new virtual objects Brian, Tamara and Abbey and let them say hello.

If you have any questions feel free to drop a comment. Let us continue, we can create
methods in classes which update the internal variables of the object. This may sound
vague but I will demonstrate with an example.

Changing internal variables
We define a class CoffeeMachine of which the virtual objects hold the amount of beans
and amount of water. Both are defined as a number (integer). We may then define
methods that add or remove beans.

 def addBean(self):
 self.bean = self.bean + 1

 def removeBean(self):
 self.bean = self.bean - 1

We do the same for the variable water. As shown below:

class CoffeeMachine:
 name = ""
 beans = 0
 water = 0

 def __init__(self, name, beans, water):
 self.name = name
 self.beans = beans
 self.water = water

 def addBean(self):
 self.beans = self.beans + 1

 def removeBean(self):
 self.beans = self.beans - 1

 def addWater(self):
 self.water = self.water + 1

 def removeWater(self):
 self.water = self.water - 1

 def printState(self):

Page 34

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

 print "Name = " + self.name
 print "Beans = " + str(self.beans)
 print "Water = " + str(self.water)

pythonBean = CoffeeMachine("Python Bean", 83, 20)
pythonBean.printState()
print ""
pythonBean.addBean()
pythonBean.printState()

Run this program. The top of the code defines the class as we described. The code below
is where we create virtual objects. In this example we have exactly one object called
“pythonBean”. We then call methods which change the internal variables, this is possible
because we defined those methods inside the class. Output:

Name = Python Bean
Beans = 83
Water = 20

Name = Python Bean
Beans = 84
Water = 20

Exercises:

1. Call addBean() multiple times
2. Change the name of machine
3. Create multiple coffee machines
4. Change the amount of water (don’t forget to print)
5. Create a class telephone with virtual objects Phone1 and Phone2 that can modify

the amount of battery.

If you are stuck or have any questions, feel free to comment.

Next tutorial: Encapsulation – Previous (random)

Top

Page 35

https://pythonspot.com
https://pythonspot.com/encapsulation/
https://pythonspot.com/random-numbers/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Encapsulation

In an object oriented python program, you can restrict access to methods and variables.
This can prevent the data from being modified by accident and is known as encapsulation.
Let’s start with an example.

Private methods
We create a class Car which has twomethods: drive() and updateSoftware(). When a car
object is created, it will call the private methods __updateSoftware(). This function cannot
be called on the object directly, only from within the class.

#!/usr/bin/env python

class Car:

 def __init__(self):
 self.__updateSoftware()

 def drive(self):
 print 'driving'

 def __updateSoftware(self):
 print 'updating software'

redcar = Car()
redcar.drive()
#redcar.__updateSoftware() not accesible from object.

This program will output:

updating software
driving

The private method __updateSoftware() can only be called within the class itself. It can
never be called from outside the class.

Private variables
Variables can be private which can be useful on many occasions. Objects can hold crucial
data for your application and you do not want that data to be changeable from anywhere in

Page 36

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

the code. An example:

#!/usr/bin/env python

class Car:

 __maxspeed = 0
 __name = ""

 def __init__(self):
 self.__maxspeed = 200
 self.__name = "Supercar"

 def drive(self):
 print 'driving. maxspeed ' + str(self.__maxspeed)

redcar = Car()
redcar.drive()
redcar.__maxspeed = 10 # will not change variable because its pri
vate
redcar.drive()

If you want to change the value of a private variable, a setter method is used. This is
simply a method that sets the value of a private variable.

#!/usr/bin/env python

class Car:

 __maxspeed = 0
 __name = ""

 def __init__(self):
 self.__maxspeed = 200
 self.__name = "Supercar"

 def drive(self):
 print 'driving. maxspeed ' + str(self.__maxspeed)

 def setMaxSpeed(self,speed):
 self.__maxspeed = speed

Page 37

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

redcar = Car()
redcar.drive()
redcar.setMaxSpeed(320)
redcar.drive()

Why would you create them? Because some of the private values you may want to change
after creation of the object while others may not need to be changed at all.

Summary
To summarize, in Python there are:

Type Description
public methods accessible from anywhere
private methods accessible only in their own class. starts

with two underscores
public variables accessible from anywhere
private variables accesible only in their own class or by a

method if defined. starts with two
underscores

Other programming languages have protected class methods too, but Python does not.

Encapsulation gives you more control over the degree of coupling in your code, it allows a
class to change its implementation without affecting other parts of the code.

Next tutorial: Method overloading – Previous (OOP)

Top

Page 38

https://pythonspot.com
https://pythonspot.com/method-overloading/
https://pythonspot.com/objects-and-classes/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Method overloading

In Python you can define a method in such a way that there are multiple ways to call it.
This is known as method overloading. We do that by setting default values of variables.
Let us do an example:

#!/usr/bin/env python

class Human:

 def sayHello(self, name=None):

 if name is not None:
 print 'Hello ' + name
 else:
 print 'Hello '

Create instance
obj = Human()

Call the method
obj.sayHello()

Call the method with a parameter
obj.sayHello('Guido')

Output:

Hello
Hello Guido

To clarify method overloading, we can now call the method sayHello() in two ways:

obj.sayHello()
obj.sayHello('Guido')

We created a method that can be called with fewer arguments than it is defined to allow.

Page 39

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

We are not limited to two variables, your method could have more variables which are
optional.

Next tutorial: Inheritance – Previous (encapsulation)

Top

Page 40

https://pythonspot.com
https://pythonspot.com/inheritance/
https://pythonspot.com/encapsulation/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Inheritance

Classes can inherit functionality from other classes, let’s take a look at how that works.
We start with a basic class:

class User:
 name = ""

 def __init__(self, name):
 self.name = name

 def printName(self):
 print "Name = " + self.name

brian = User("brian")
brian.printName()

This creates one instance called brian which outputs its given name. Add another class
called Programmer.

class Programmer(User):

 def __init__(self, name):
 self.name = name
 def doPython(self):
 print "Programming Python"

This looks very much like a standard class except than User is given in the parameters.
This means all functionality of the class User is accesible in the Programmer class.

Full example of Python inheritance:

class User:
 name = ""

 def __init__(self, name):
 self.name = name

 def printName(self):

Page 41

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

 print "Name = " + self.name

class Programmer(User):
 def __init__(self, name):
 self.name = name

 def doPython(self):
 print "Programming Python"

brian = User("brian")
brian.printName()

diana = Programmer("Diana")
diana.printName()
diana.doPython()

The output:

Name = brian
Name = Diana
Programming Python

Brian is an instance of User and can only access the method printName. Diana is an
instance of Programmer, a class with inheritance from User, and can access both the
methods in Programmer and User.

Next tutorial: Polymorphism – Previous (overloading)

Top

Page 42

https://pythonspot.com
https://pythonspot.com/poylmorphism/
https://pythonspot.com/method-overloading/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Polymorphism

Sometimes an object comes in many types or forms. If we have a button, there are many
different draw outputs (round button, check button, square button, button with image) but
they do share the same logic: onClick(). We access them using the same method . This
idea is called Polymorphism.

Polymorphism is based on the greek words Poly (many) and morphism (forms). We will
create a structure that can take or use many forms of objects.

Polymorphism in Python with a function:
We create two classes: Bear and Dog, both can make a distinct sound. We then make two
instances and call their action using the same method.

class Bear(object):
 def sound(self):
 print "Groarrr"

class Dog(object):
 def sound(self):
 print "Woof woof!"

def makeSound(animalType):
 animalType.sound()

bearObj = Bear()
dogObj = Dog()

makeSound(bearObj)
makeSound(dogObj)

Output:

Groarrr
Woof woof!

Polymorphism with abstract class (most commonly used)
If you create an editor you may not know in advance what type of documents a user will

Page 43

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

open (pdf format or word format?). Wouldn’t it be great to acess them like this, instead of
having 20 types for every document?

for document in documents:
 print document.name + ': ' + document.show()

To do so, we create an abstract class called document. This class does not have any
implementation but defines the structure (in form of functions) that all forms must have. If
we define the function show() then both the PdfDocument and WordDocument must have
the show() function. Full code:

class Document:
 def __init__(self, name):
 self.name = name

 def show(self):
 raise NotImplementedError("Subclass must implement abstrac
t method")

class Pdf(Document):
 def show(self):
 return 'Show pdf contents!'

class Word(Document):
 def show(self):
 return 'Show word contents!'

documents = [Pdf('Document1'),
 Pdf('Document2'),
 Word('Document3')]

for document in documents:
 print document.name + ': ' + document.show()

Output:

Document1: Show pdf contents!
Document2: Show pdf contents!
Document3: Show word contents!

Page 44

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

We have an abstract access point (document) to many types of objects (pdf,word) that
follow the same structure.

Another example would be to have an abstract class Car which holds the structure drive()
and stop(). We define two objects Sportscar and Truck, both are a form of Car. In pseudo
code what we will do is:

class Car:
 def drive abstract, no implementation.
 def stop abstract, no implementation.

class Sportscar(Car):
 def drive: implementation of sportscar
 def stop: implementation of sportscar

class Truck(Car):
 def drive: implementation of truck
 def stop: implementation of truck

Then we can access any type of car and call the functionality without taking further into
account if the form is Sportscar or Truck. Full code:

class Car:
 def __init__(self, name):
 self.name = name

 def drive(self):
 raise NotImplementedError("Subclass must implement abstrac
t method")

 def stop(self):
 raise NotImplementedError("Subclass must implement abstrac
t method")

class Sportscar(Car):
 def drive(self):
 return 'Sportscar driving!'

 def stop(self):
 return 'Sportscar breaking!'

Page 45

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

class Truck(Car):
 def drive(self):
 return 'Truck driving slowly because heavily loaded.'

 def stop(self):
 return 'Truck breaking!'

cars = [Truck('Bananatruck'),
 Truck('Orangetruck'),
 Sportscar('Z3')]

for car in cars:
 print car.name + ': ' + car.drive()

Output:

Bananatruck: Truck driving slowly because heavily loaded.
Orangetruck: Truck driving slowly because heavily loaded.
Z3: Sportscar driving!

Next tutorial: Inner classes – Previous (inheritance)

Top

Page 46

https://pythonspot.com
https://pythonspot.com/inner-classes
https://pythonspot.com/inheritance/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Inner classes

An inner class or nested class is a defined entirely within the body of another class Let
us do an example:

#!/usr/bin/env python

class Human:

 def __init__(self):
 self.name = 'Guido'
 self.head = self.Head()

 class Head:
 def talk(self):
 return 'talking...'

if __name__ == '__main__':
 guido = Human()
 print guido.name
 print guido.head.talk()

Output:

Guido
talking...

In the program above we have the inner class Head() which has its own method. An inner
class can have both methods and variables. In this example the constructor of the class
Human (__init__) creates a new head object. You are by no means limited to the number
of inner classes, for example this code will work too:

#!/usr/bin/env python

class Human:

 def __init__(self):
 self.name = 'Guido'
 self.head = self.Head()

Page 47

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

 self.brain = self.Brain()

 class Head:
 def talk(self):
 return 'talking...'

 class Brain:
 def think(self):
 return 'thinking...'

if __name__ == '__main__':
 guido = Human()
 print guido.name
 print guido.head.talk()
 print guido.brain.think()

By using inner classes you can make your code even more object orientated. A single
object can hold several sub objects. We can use them to add more structure to our
programs.

Next tutorial: Factory method – Previous (polymorphism)

Top

Page 48

https://pythonspot.com
https://pythonspot.com/factory-method/
https://pythonspot.com/poylmorphism/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Factory method

We may not always know what kind of objects we want to create in advance. Some
objects could be created only at execution time after a user requests so. Examples: A user
may click on a certain button that creates an object. A user may create several new
documents of different types. If a user starts a webbrowser, the browser does not know in
advance how many tabs (where every tab is an object) will be opened.

To deal with this we can use the factory method pattern. The idea is to have one function,
the factory, that takes an input string and outputs an object. Thus, the factory returns
objects.

obj = Car.factory("Racecar")
obj.drive()

The type of object depends on the type of input string you specify. This technique could
make your program more easily extensible also. A new programmer could easily add
functionality by adding a new string and class, without having to read all of the source
code.

Full code:

class Car(object):

 def factory(type):
 if type == "Racecar":
 return Racecar()
 if type == "Van":
 return Van()
 assert 0, "Bad car creation: " + type

 factory = staticmethod(factory)

class Racecar(Car):
 def drive(self): print("Racecar driving.")

class Van(Car):
 def drive(self): print("Van driving.")

Create object using factory.
obj = Car.factory("Racecar")
obj.drive()

Page 49

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Output:

Racecar driving.

Next tutorial: Binary numbers and operations – Previous (inner class)

Top

Page 50

https://pythonspot.com
https://pythonspot.com/binary-numbers-and-logical-operators/
https://pythonspot.com/inner-classes

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Binary numbers and logical operators

We have looked at simple numbers and operations before. In this article you will learn how

numbers work inside the computer and a some of magic to go along with that

More detailed: While this is not directly useful in web applications or most desktop
applications, it is very useful to know. If you are only interested in that, you can skip to one
of the next tutorials. In this article you will learn how to use binary numbers in Python, how
to convert them to decimals and how to do bitwise operations on them.

Binary numbers
At the lowest level, the computer has no notion whatsoever of numbers except ‘there is a
signal’ or ‘these is not a signal’. You can think of this as a light switch: Either the switch
is on or it is off.

This tiny amount of information, the smallest amount of information that you can store in a
computer, is known as a bit. We represent a bit as either low (0) or high (1).

To represent higher numbers than 1, the idea was born to use a sequence of bits. A
sequence of eight bits could store much larger numbers, this is called a byte. A sequence

consisting of ones and zeroes is known as binary. Our traditional counting system with ten

digits is known as decimal.

Binary numbers and their decimal representation.

Lets see that in practice:

Prints out a few binary numbers.
print int('00', 2)
print int('01', 2)
print int('10', 2)
print int('11', 2)

Page 51

https://pythonspot.com
https://pythonspot.com/wp-content/uploads/2015/05/binary.png

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

The second parameter 2, tells Python we have a number based on 2 elements (1 and 0).
To convert a byte (8 bits) to decimal, simple write a combination of eight bits in the first
parameter.

Prints out a few binary numbers.
print int('00000010', 2) # outputs 2
print int('00000011', 2) # outputs 3
print int('00010001', 2) # outputs 17
print int('11111111', 2) # outputs 255

How does the computer do this? Every digit (from right to left) is multiplied by the power of
two.

The number ‘00010001‘ is (1 x 2^0) + (0 x 2^1) + (0 x 2^2) + (0 x 2^3) + (1 x 2^4) + (0 x
2^5) + (0 x 2^6) + (0 x 2^7) = 16 + 1 = 17. Remember, read from right to left.

The number ‘00110010’ would be (0 x 2^0) + (1 x 2^1) + (0 x 2^2) + (0 x 2^3) + (1 x 2^4) +
(1 x 2^5) + (0 x 2^6) + (0 x 2^7) = 32+16+2 = 50.

Try the sequence ‘00101010’ yourself to see if you understand and verify with a Python
program.

Logical operations with binary numbers

Binary Left Shift and Binary Right Shift
Multiplication by a factor two and division by a factor of two is very easy in binary. We
simply shift the bits left or right. We shift left below:

Bit 4 Bit 3 Bit2 Bit 1
0 1 0 1
1 0 1 0

Before shifting (0,1,0,1) we have the number 5 . After shifting (1,0,1,0) we have the
number 10. In python you can use the bitwise left operator (<<) to shift left and the bitwise
right operator (>>) to shift right.

Page 52

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

inputA = int('0101',2)

print "Before shifting " + str(inputA) + " " + bin(inputA)
print "After shifting in binary: " + bin(inputA << 1)
print "After shifting in decimal: " + str(inputA << 1)

Output:

Before shifting 5 0b101
After shifting in binary: 0b1010
After shifting in decimal: 10

The AND operator
Given two inputs, the computer can do several logic operations with those bits. Let’s take
the AND operator. If input A and input B are positive, the output will be positive. We will
demonstrate the AND operator graphically, the two left ones are input A and input B, the
right circle is the output:

Page 53

https://pythonspot.com
https://pythonspot.com/wp-content/uploads/2015/05/bitwiseAND.jpg

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Bitwise AND

In code this is as simple as using the & symbol, which represents the Logical AND
operator.

This code will execute a bitwise logical AND. Both inputA and in
putB are bits.
inputA = 1
inputB = 1
print inputA & inputB # Bitwise AND

By changing the inputs you will have the same results as the image above. We can do the
AND operator on a sequence:

inputA = int('00100011',2) # define binary sequence inputA
inputB = int('00101101',2) # define binary sequence inputB

print bin(inputA & inputB) # logical AND on inputA and inputB an
d output in binary

Output:

0b100001 # equals 00100001

This makes sense because if you do the operation by hand:

00100011
00101101
-------- Logical bitwise AND
00100001

Page 54

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

The OR operator
Now that you have learned the AND operator, let’s have a look at the OR operator. Given
two inputs, the output will be zero only if A and B are both zero.

binary bitwise OR

To execute it, we use the | operator. A sequence of bits can simply be executed like this:

inputA = int('00100011',2) # define binary number
inputB = int('00101101',2) # define binary number

print bin(inputA) # prints inputA in binary
print bin(inputB) # prints inputB in binary
print bin(inputA | inputB) # Execute bitwise logical OR and prin
t result in binary

Output:

Page 55

https://pythonspot.com
https://pythonspot.com/wp-content/uploads/2015/05/bitwiseOR.jpg

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

0b100011
0b101101
0b101111

The XOR operator
This is an interesting operator: The Exclusive OR or shortly XOR.

bitwise XOR

To execute it, we use the ^ operator. A sequence of bits can simply be executed like this:

inputA = int('00100011',2) # define binary number
inputB = int('00101101',2) # define binary number

print bin(inputA) # prints inputA in binary
print bin(inputB) # prints inputB in binary
print bin(inputA ^ inputB) # Execute bitwise logical OR and prin

Page 56

https://pythonspot.com
https://pythonspot.com/wp-content/uploads/2015/05/bitwiseXOR.jpg

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

t result in binary

Output:

0b100011
0b101101
0b1110

Next page: Recursive functions – Previous (factory method)

Top

Page 57

https://pythonspot.com
https://pythonspot.com/recursion/
https://pythonspot.com/factory-method/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Recursion

In English there are various examples of recursion: “To understand recursion, you must
first understand recursion”, “A human is someone whose mother is human”. You might
wonder, what does this have to do with programming?

You may want to split a complex problem into several smaller ones. You are already
familiar with loops or iterations, but in some situations recursion may be a better solution.
In Python, a function is said to be recursive if it calls itself and has a termination condition.
Why a termination condition? To stop the function from calling itself ad infinity.

Recursion in with a list
Let’s start with a very basic example: adding all numbers in a list. Without recursion, this
could be:

#!/usr/bin/env python

def sum(list):
 sum = 0

 # Add every number in the list.
 for i in range(0, len(list)):
 sum = sum + list[i]

 # Return the sum.
 return sum

print(sum([5,7,3,8,10]))

Where we simply call the sum function, the function adds every element to the variable
sum and returns. To do this recursively:

#!/usr/bin/env python

def sum(list):
 if len(list) == 1:
 return list[0]
 else:
 return list[0] + sum(list[1:])

print(sum([5,7,3,8,10]))

Page 58

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

If the length of the list is one it returns the list (the termination condition). Else, it returns
the element and a call to the function sum() minus one element of the list. If all calls are
executed, it returns reaches the termination condition and returns the answer.

Factorial with recursion
The mathematical definition of factorial is: n! = n * (n-1)!, if n > 1 and f(1) = 1. Example: 3!
= 3 x 2 x 1 = 6. We can implement this in Python using a recursive function:

#!/usr/bin/env python

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

print factorial(3)

When calling the factorial function n = 3. Thus it returns n * factorial(n-1). This process will
continue until n = 1. If n==1 is reached, it will return the result.

Limitations of recursions
Everytime a function calls itself and stores some memory. Thus, a recursive function could
hold much more memory than a traditional function. Python stops the function calls after a
depth of 1000 calls. If you run this example:

#!/usr/bin/env python

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

print factorial(3000)

You will get the error:

Page 59

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

RuntimeError: maximum recursion depth exceeded

In other programming languages, your program could simply crash. You can resolve this
by modifying the number of recursion calls such as:

#!/usr/bin/env python
import sys

sys.setrecursionlimit(5000)

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n-1)

print factorial(3000)

but keep in mind there is still a limit to the input for the factorial function. For this reason,
you should use recursion wisely. As you learned now for the factorial problem, a recursive
function is not the best solution. For other problems such as traversing a directory,
recursion may be a good solution.

Next tutorial: Logging – Previous (binary)

Top

Page 60

https://pythonspot.com
https://pythonspot.com/logging/
https://pythonspot.com/binary-numbers-and-logical-operators/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Logging

Python logging
We can track events in a software application, this is known as logging. Let’s start with a
simple example, we will log a warning message:

import logging

print a log message to the console.
logging.warning('This is a warning!')

This will output:

WARNING:root:This is a warning!

We can easily output to a file:

import logging

logging.basicConfig(filename='program.log',level=logging.DEBUG)
logging.warning('An example message.')
logging.warning('Another message')

The importance of a log message depends on the severity.

Level of severity
The logger module has several levels of severity. We set the level of severity using this
line of code:

logging.basicConfig(level=logging.DEBUG)

These are the levels of severity:

Type Description

Page 61

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Type Description
DEBUG Information only for problem

diagnostics
INFO The program is running as

expected
WARNING Indicate something went

wrong
ERROR The software will no longer

be able to function
CRITICAL Very serious eror

The default logging level is warning, which implies that other messages are ignored. If you
want to print debug or info log messages you have to change the logging level like so:

import logging

logging.basicConfig(level=logging.DEBUG)
logging.debug('Debug message')

Time in log
You can enable time for logging using this line of code:

logging.basicConfig(format='%(asctime)s %(message)s')

An example below:

import logging

logging.basicConfig(format='%(asctime)s %(message)s', level=loggin
g.DEBUG)
logging.info('Logging app started')
logging.warning('An example logging message.')
logging.warning('Another log message')

Output:

Page 62

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

2015-06-25 23:24:01,153 Logging app started
2015-06-25 23:24:01,153 An example message.
2015-06-25 23:24:01,153 Another message

Next tutorial: Subprocess – Previous (recursion)

Top

Page 63

https://pythonspot.com
https://pythonspot.com/python-subprocess/
https://pythonspot.com/recursion/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Python Subprocess

The subprocess module enables you to start new applications from your Python
program. How cool is that?

Starting a process in Python:
You can start a process in Python using the Popen function call. The program below starts
the unix program ‘cat’ and the second parameter is the argument. This is equivalent to
‘cat test.py’. You can start any program with any parameter.

#!/usr/bin/env python

from subprocess import Popen, PIPE

process = Popen(['cat', 'test.py'], stdout=PIPE, stderr=PIPE)
stdout, stderr = process.communicate()
print stdout

The process.communicate() call reads input and output from the process. stdout is the
process output. stderr will be written only if an error occurs. If you want to wait for the
program to finish you can call Popen.wait().

Another method to start a process in Python:
Subprocess has a method call() which can be used to start a program. The parameter is a
list of which the first argument must be the program name. The full definition is:

subprocess.call(args, *, stdin=None, stdout=None, stderr=None, she
ll=False)
Run the command described by args.
Wait for command to complete, then return the returncode attribu
te.

In the example below the full command would be “ls -l”

#!/usr/bin/env python

import subprocess
subprocess.call(["ls", "-l"])

Page 64

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Running a process and saving to a string
We can get the output of a program and store it in a string directly using check_output.
The method is defined as:

 subprocess.check_output(args, *, stdin=None, stderr=None, shell=F
alse, universal_newlines=False)
 # Run command with arguments and return its output as a byte stri
ng.

Example usage:

#!/usr/bin/env python
import subprocess

s = subprocess.check_output(["echo", "Hello World!"])
print("s = " + s)

Next tutorial: Threading – Previous (logging)

Top

Page 65

https://pythonspot.com
https://pythonspot.com/threading/
https://pythonspot.com/logging/

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Threading

In Python you can create threads using the thread module in Python 2.x or _thread module
in Python 3. We will use the threading module to interact with it.

A thread is an operating system process with different features than a normal process:

threads exist as a subset of a process
threads share memory and resources
processes have a different address space (in memory)

When would you use threading? Usually when you want a function to occur at the same
time as your program. If you create server software, you want the server not only listens to
one connection but to many connections. In short, threads enable programs to
execute multiple tasks at once.

Python threading
Let’s create a thread program. In this program we will start 10 threads which will each
output their id.

import threading

Our thread class
class MyThread (threading.Thread):

 def __init__(self,x):
 self.__x = x
 threading.Thread.__init__(self)

 def run (self):
 print str(self.__x)

Start 10 threads.
for x in xrange(10):
 MyThread(x).start()

Output:

0
1
...
9

Page 66

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

Threads do not have to stop if run once. Threads could be timed, where a threads
functionality is repeated every x seconds.

Timed threads
In Python, the Timer class is a subclass of the Thread class. This means it behaves
similar. We can use the timer class to create timed threads. Timers are started with the
.start() method call, just like regular threads. The program below creates a thread that
starts after 5 seconds.

#!/usr/bin/env python
from threading import *

def hello():
 print "hello, world"

create thread
t = Timer(10.0, hello)

start thread after 10 seconds
t.start()

Repeating functionality using threads
We can execute threads endlessly like this:

#!/usr/bin/env python
from threading import *
import time

def handleClient1():
 while(True):
 print "Waiting for client 1..."
 time.sleep(5) # wait 5 seconds

def handleClient2():
 while(True):
 print "Waiting for client 2..."
 time.sleep(5) # wait 5 seconds

create threads
t = Timer(5.0, handleClient1)

Page 67

https://pythonspot.com

Python Beginner Tutorials - 24th July 2015
View online at https://pythonspot.com

t2 = Timer(3.0, handleClient2)

start threads
t.start()
t2.start()

Top

Powered by TCPDF (www.tcpdf.org)

Page 68

https://pythonspot.com
http://www.tcpdf.org

